1、數據挖掘解決的典型商業問題 需要強調的是,數據挖掘技術從一開始就是面向應用的。目前,在很多領域,數據挖掘(data mining)都是一個很時髦的詞,尤其是在如銀行、電信、保險、交通、零售(如超級市場)等商業領域。數據挖掘所能解決的典型商業問題包括:
1、數據挖掘解決的典型商業問題
需要強調的是,數據挖掘技術從一開始就是面向應用的。目前,在很多領域,數據挖掘(data mining)都是一個很時髦的詞,尤其是在如銀行、電信、保險、交通、零售(如超級市場)等商業領域。數據挖掘所能解決的典型商業問題包括:數據庫營銷(Database Marketing)、客戶群體劃分(Customer Segmentation & Classification)、背景分析(Profile Analysis)、交叉銷售(Cross-selling)等市場分析行為,以及客戶流失性分析(Churn Analysis)、客戶信用記分(Credit Scoring)、欺詐發現(Fraud Detection)等等。
2、數據挖掘在市場營銷的應用
數據挖掘技術在企業市場營銷中得到了比較普遍的應用,它是以市場營銷學的市場細分原理為基礎,其基本假定是“消費者過去的行為是其今后消費傾向的最好說明”。
通過收集、加工和處理涉及消費者消費行為的大量信息,確定特定消費群體或個體的興趣、消費習慣、消費傾向和消費需求,進而推斷出相應消費群體或個體下一步的消費行為,然后以此為基礎,對所識別出來的消費群體進行特定內容的定向營銷,這與傳統的不區分消費者對象特征的大規模營銷手段相比,大大節省了營銷成本,提高了營銷效果,從而為企業帶來更多的利潤。
商業消費信息來自市場中的各種渠道。例如,每當我們用信用卡消費時,商業企業就可以在信用卡結算過程收集商業消費信息,記錄下我們進行消費的時間、地點、感興趣的商品或服務、愿意接收的價格水平和支付能力等數據;當我們在申辦信用卡、辦理汽車駕駛執照、填寫商品保修單等其他需要填寫表格的場合時,我們的個人信息就存入了相應的業務數據庫;企業除了自行收集相關業務信息之外,甚至可以從其他公司或機構購買此類信息為自己所用。
這些來自各種渠道的數據信息被組合,應用超級計算機、并行處理、神經元網絡、模型化算法和其他信息處理技術手段進行處理,從中得到商家用于向特定消費群體或個體進行定向營銷的決策信息。這種數據信息是如何應用的呢?舉一個簡單的例子,當銀行通過對業務數據進行挖掘后,發現一個銀行帳戶持有者突然要求申請雙人聯合帳戶時,并且確認該消費者是第一次申請聯合帳戶,銀行會推斷該用戶可能要結婚了,它就會向該用戶定向推銷用于購買房屋、支付子女學費等長期投資業務,銀行甚至可能將該信息賣給專營婚慶商品和服務的公司。數據挖掘構筑競爭優勢。
在市場經濟比較發達的國家和地區,許多公司都開始在原有信息系統的基礎上通過數據挖掘對業務信息進行深加工,以構筑自己的競爭優勢,擴大自己的營業額。美國運通公司(American Express)有一個用于記錄信用卡業務的數據庫,數據量達到54億字符,并仍在隨著業務進展不斷更新。運通公司通過對這些數據進行挖掘,制定了“關聯結算(Relation ship Billing)優惠”的促銷策略,即如果一個顧客在一個商店用運通卡購買一套時裝,那么在同一個商店再買一雙鞋,就可以得到比較大的折扣,這樣既可以增加商店的銷售量,也可以增加運通卡在該商店的使用率。再如,居住在倫敦的持卡消費者如果最近剛剛乘英國航空公司的航班去過巴黎,那么他可能會得到一個周末前往紐約的機票打折優惠卡。
基于數據挖掘的營銷,常常可以向消費者發出與其以前的消費行為相關的推銷材料。卡夫(Kraft)食品公司建立了一個擁有3000萬客戶資料的數據庫,數據庫是通過收集對公司發出的優惠券等其他促銷手段作出積極反應的客戶和銷售記錄而建立起來的,卡夫公司通過數據挖掘了解特定客戶的興趣和口味,并以此為基礎向他們發送特定產品的優惠券,并為他們推薦符合客戶口味和健康狀況的卡夫產品食譜。美國的讀者文摘(Reader''s Digest)出版公司運行著一個積累了40年的業務數據庫,其中容納有遍布全球的一億多個訂戶的資料,數據庫每天24小時連續運行,保證數據不斷得到實時的更新,正是基于對客戶資料數據庫進行數據挖掘的優勢,使讀者文摘出版公司能夠從通俗雜志擴展到專業雜志、書刊和聲像制品的出版和發行業務,極大地擴展了自己的業務。
基于數據挖掘的營銷對我國當前的市場競爭中也很具有啟發意義,我們經常可以看到繁華商業街上一些廠商對來往行人不分對象地散發大量商品宣傳廣告,其結果是不需要的人隨手丟棄資料,而需要的人并不一定能夠得到。如果搞家電維修服務的公司向在商店中剛剛購買家電的消費者郵寄維修服務廣告,賣特效藥品的廠商向醫院特定門診就醫的病人郵寄廣告,肯定會比漫無目的的營銷效果要好得多。
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com